Geometric Modeling

Silke Jansen, Ruxandra Lasowski,
Art Tevs, Michael Wand

Exercise 1 (Convex Sets):

[6 points]
There are two definitions of the convex hull of a point set $P=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}$:
i. All convex combinations of points from P (reminder: convex combinations are linear combinations with non-negative weights that sum to one).
ii. A minimal convex set with respect to set inclusion " \subseteq " that contains P. A set C is convex if and only if it contains all straight line segments between any two points from C.

Prove that the two definitions are equivalent.

Hint: Consider two sets C_{1} and C_{2} that are the convex hull of P with respect to definition (i) and (ii) and show separately that $C_{1} \subseteq C_{2}$ and $C_{2} \subseteq C_{1}$, by contradiction.

Exercise 2 (De Casteljau algorithm and subdivision):
[1+3+2 points]

Given the cubic polynomial curve

$$
P(u)=-\binom{7 / 8}{5 / 8} u^{3}+\binom{9}{15 / 4} u^{2}-\binom{57 / 2}{9 / 2} u+\binom{30}{-1}
$$

a. Find the polar form $p\left(u_{1}, u_{2}, u_{3}\right)$ of $P(u)$, as well as the Bézier points (the vertices of the control polygon) $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ of $P(u)$ w.r.t. the interval $[2,4]$. Sketch the the control polygon. (Use a full A4 paper and a meaningful scale, like $4 \mathrm{~cm}=1$ unit)
b. Evaluate the polynomial $P(u)$ using the De Casteljau algorithm at the sample points $u \in\{5 / 2,3,7 / 2\}$ and draw it into the same graph.
c. Use the result from (b) for subdividing $P(u)$ at $u=3$ and subdivide the right part of the curve again at its midpoint $u=7 / 2$. Add this control polygon to the same graph like before and draw the curve described by $P(u)$.

Given is the cubic polynomial curve

$$
F(u)=\binom{15}{-6} u^{3}+\binom{27}{10} u^{2}-\binom{9}{9} u
$$

w.r.t. the parameter interval [0,1].
a. Find the first and second derivative of F.
b. Find the polar form $f\left(u_{1}, u_{2}, u_{3}\right)$ of F as well as the polar forms of the derivatives F^{\prime} and $F^{\prime \prime}$. Show that they are equal to $3 f\left(u_{1}, u_{2}, \overrightarrow{1}\right)$ and $6 f\left(u_{1}, \overrightarrow{1}, \overrightarrow{1}\right)$ respectively.

Note: $\left.f\left(u_{1}, u_{2}, \overrightarrow{1}\right)\right)$ is short for $f\left(u_{1}, u_{2}, 1\right)-f\left(u_{1}, u_{2}, 0\right)$

Exercise 4 (DeBoor algorithm):
[3+2 points]
Given the uniform B-spline defined by the points

$$
P_{o}=\binom{-2}{-10}, \quad P_{1}=\binom{-4}{2}, \quad P_{2}=\binom{6}{5}, \quad P_{3}=\binom{4}{-7}
$$

and the knot vector [0,1,2,3,4,5].
a. Evaluate the position of the curve at parameter $\mathrm{t}=2.5$ using DeBoor's algorithm. Sketch the control polygon and the points constructed by the algorithm.
b. For the B-spline from (a), compute the corresponding Bézier control points which describe the same cubic curve. Draw the points and the resulting Bézier curve.

